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Abstract An optimal control problem for cooling strategies in polymer crystalliza-
tion processes described by a deterministic model is solved in the framework of a free
boundary problem. The strategy of cooling both sides of a one dimensional sample is
introduced for the first time in this model, and is shown to be well approximated by
the sum of the solutions of two one-phase Stefan problems, even for arbitrary applied
temperature profiles. This result is then used to show that cooling both sides is always
more effective in polymer production than injecting the same amount of cold through
only one side. The optimal cooling strategy, focused in avoiding low temperatures and
in shortening cooling times, is derived, and consists in applying the same constant
temperature at both sides. Explicit expressions of the optimal controls in terms of the
parameters of the material are also obtained.
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1 Introduction

Optimization of cooling strategies is a fundamental part of modeling polymerization
processes. A recent model of polymer crystallization [2,3] is being studied to derive the
optimal cooling strategy in terms of the industrial main interests, focused in reducing
the duration of the cooling process while avoiding excessively low temperatures.

The model consists of two non-linear partial differential equations for the degree
of crystallinity y(x, t), defined as the mean volume fraction of the space occupied
by crystals, and the temperature field T (x, t), coupled by means of the rate func-
tions of nucleation and growth bN (T ) and bG(T ), the function of starting of nucle-
ation κ(y) = (1 − y)2, and the function of aggregation and saturation of nuclei
β(y) = y(1 − y):

yt (x, t) = β(y(x, t))bG(T (x, t))+ v0κ(y(x, t))bN (T (x, t)), (1)

Tt (x, t) = σTxx (x, t)+ aGβ(y(x, t))bG(T (x, t)), (2)

for (x, t)∈ Qτ = (0, L) × (0, τ ), where L is the length of the sample and τ is the
time at which the cooling process is stopped.

Equations (1)–(2) are solved with the following boundary and initial conditions:

T (0, t) = u0(t), T (L , t) = uL(t), t ∈ (0, τ ), (3)

y(x, 0) = 0, T (x, 0) = T0, x ∈ (0, L). (4)

The nucleation and growth rate functions are such that bG(T )/G = bN (T )/N =
θ(T ), where

θ(T )
de f=

{
exp (−ηT ) if T < T f ,

0 if T ≥ T f .
(5)

The parameters G, v0, N , σ, aG , η and T f are positive real constants denoting the
growth factor, the initial mass, the nucleation factor, the heat diffusion coefficient,
the non-isothermal factor, the nucleation and growth exponent and the critical phase
transition temperature (from liquid to solid), respectively. Typical values and more
details of the model can be found in Refs. [2–4].

Condition (3) means that the injection of cold is applied at both sides of the sample,
x0 = 0 and xL = L; we call this case a double cooling strategy. Previous strategies
used in this model have only considered to cool one side of the sample (single cooling),
using a thermally insulated boundary at the other side (e.g. Tx (L , t) = 0); see Refs.
[3–5].

In the single cooling case, a crystallization front is formed close to the cooling
side and moves towards the interior of the sample until the other side is reached. The
front separates the liquid (y = 0) and the solid (y = 1) phases, and is not a travelling
wave; instead, it is a band of crystallization which exhibits an oscillating advance with
variable shape and velocity strongly dependent on the parameters of the material [3].

Under some conditions, the crystallization band can be identified with a thin inter-
face where the nucleation and growth processes are confined and take place at the
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freezing temperature T f [5]. Then, a free boundary problem (FBP) framework can be
used to describe the polymerization process by means of a one-phase Stefan problem
[1]. Before this framework was established, numerical simulations were recently used
to derive both the optimal applied temperature u0 and the cooling process duration τ
giving rise to the optimal single cooling strategy [4].

In the present paper this FBP framework is used to characterize the solution of the
double cooling problem (1)–(4) by means of two Stefan problems, allowing us to show
that double cooling is always more effective than single cooling (injecting the same
amount of cold), and to derive explicit expressions of the optimal controls u0(t), uL(t)
and τ giving rise to the optimal cooling strategy, expressions written in terms of the
parameters of the material.

2 Stefan problems describing polymerization processes

The FBP framework for single cooling strategies consists in identifying a free bound-
ary h(t) with the instantaneous amount of crystallized polymer P(t) defined by

P(t)
de f=

L∫
0

y(x, t) dx . (6)

The free boundary h(t) allows to consider the crystallinity as a step function in the
whole sample, y(x, t)= 1 in [0, h(t)] and y(x, t)= 0 in [h(t), L], so that P(t)= h(t).
At the interface, the temperature is assumed to be precisely T f , i.e. T (h(t), t)= T f .

These assumptions allow us to derive a Stefan condition and the corresponding
Stefan problem; details of the derivation and the solution of the Stefan problem for
different applied temperature profiles will be presented elsewhere [5]. Here it suffices
to say that the Stefan condition provides us with an explicit expression of the ratio
of the latent heat Lδ to the specific heat c in terms of the parameters of the material,
Lδ/c = aG Kδ , where Kδ = [1 + δ(ln δ − 1)]/(1 − δ)2, δ = v0 N/G, and that the
solution of the Stefan problem for arbitrary applied temperature profiles is given by the
so-called pseudo-steady state (PSS) approximation, valid in the limit Ste � 1, where
the Stefan number Ste is the ratio of the sensible heat c	T = c maxt {T f − u(t)} to
the latent heat Lδ [1]:

Ste
de f= c	T

Lδ . (7)

2.1 Stefan problems for double cooling strategies

When both sides of the sample are cooled, two crystallization bands emerge and move
towards each other until they merge somewhere in the interior of the sample.

We claim that a double cooling process can be seen as the sum of two single cooling
processes, and therefore can be approximated by means of two Stefan problems for
two free boundaries h0(t) and hL(t): for i = 0, L ,
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∂Ti

∂t
(x, t) = σ

∂2Ti

∂x2 (x, t), x ∈ [0, hi (t)), t > 0, (8)

Ti (x, t) = T f , x ∈ (hi (t),+∞), t > 0, (9)

Ti (0, t) = ui (t), t > 0, (10)

Ti (hi (t), t) = T f , t > 0, (11)
Lδ
c

h′
i (t) = σ

∂Ti

∂x
(hi (t), t), t > 0. (12)

The PSS solution of these Stefan problems are, for i = 0, L (see Refs. [1,5]),

hPSS
i (t) =

√
2σc

Lδ Qi (t), (13)

T PSS
i (x, t) =

{
ui (t)+ T f −ui (t)

hPSS
i (t)

x if x ≤ hPSS
i (t),

T f if hPSS
i (t) ≤ x,

(14)

where Qi (t) is the total amount of cold injected into the sample along the time interval
[0, t] through the boundary xi :

Qi (t)
de f=

t∫
0

(
T f − ui (s)

)
ds, for i = 0, L . (15)

Then, the temperature and crystallinity profiles of the double cooling process can be
approximated by the following functions: (see Fig. 1 and error estimates)

T PSS(x, t) = T PSS
0 (x, t)+ T PSS

L (L − x, t)− T f , (16)

yPSS(x, t) =
{

0 if x ∈ [
hPSS

0 (t), L − hPSS
L (t)

]
,

1 if not.
(17)

An excellent agreement is also obtained for different applied temperatures profiles,
as shown in Fig. 2, where we have depicted the time evolution of the free boundaries
h0(t) and hL(t) together with their sum and the magnitude thus approximated, P(t),
for the case described in Fig. 1, a case where the applied temperature is variable in
time, and a case of an asymmetric double cooling. Error estimates are obtained later.

2.2 Amount of crystallized polymer in double cooling strategies

According to the results obtained in the previous section, it turns out that the amount
of crystallized polymer P(t) can be accurately approximated by

P(t) = hPSS
0 (t)+ hPSS

L (t). (18)
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Fig. 1 Upper row: Crystallinity (left) and temperature field (right) obtained by direct simulation of the
polymerization problem (1)–(4). Lower row: same as above but obtained by using (16)–(17) with the solu-
tion (13)–(14) of the Stefan problems (8)–(12). Parameter values are u0 = uL = 40 ◦C, T f = 70 ◦C, σ =
0.002 m2s−1, aG = 2500 ◦C,G = 5 s−1, N = 20 s−1, v0 = 0.01, η = 0.1, L = 1 m and T0 = 100 ◦C.
Resulting values are δ = 0.04, Kδ = 0.902 and Ste = 0.013. Note the symmetry with respect to x = 0.5

10

Time t (x10
3
 s)

0

0.2

0.4

0.6

0.8

1
P(t)
h0(t)+hL(t)
h0(t)
hL(t)

(b)

u0 = uL = exp.

Time t (x10
3
 s)

0

0.2

0.4

0.6

0.8

1
P(t)
h0(t)+hL(t)
h0(t)
hL(t)

uL = exp.

(c)

u0 = 40
o
C

4 6 8 6 80 2 0 2 40 1 2 3 4 5

Time t (x10
3
 s)

0

0.2

0.4

0.6

0.8

1

P
(t

),
 h

0(
t)

+
h L

(t
),

 h
0(

t)
, 

h L
(t

)

P(t)
h0(t)+hL(t)
h0(t)
hL(t)

(a)

u0 = uL = 40
o
C

Fig. 2 Total amount of polymer P(t) (solid line) compared with the sum of the two free boundaries h0(t)+
hL (t) (solid line with circles); also depicted are h0(t) and hL (t) (doted and dashed lines respectively).

a u0 = uL = 40 ◦C, b u0 = uL = T f + Lδ(1 − eγ
2σ t )/c. c u0 = 40 ◦C, uL = T f + Lδ(1 − eγ

2σ t )/c

(asymmetric cooling). We have used γ = 2.76 × 10−2 m−1
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Therefore, a given amount of cold Q(t) = Q0(t) + QL(t) injected into the sample
with a double cooling strategy will produce an amount of polymer given by

P(t) =
√

2σc

Lδ Q0(t)+
√

2σc

Lδ QL(t) (19)

≥
√

2σc

Lδ [Q0(t)+ QL(t)] (20)

≥
√

2σc

Lδ Q(t)
de f= P(t), (21)

where P(t) is the amount of crystallized polymer produced by injecting an amount of
cold Q(t) by cooling only one side of the sample, showing that double cooling always
produces a greater or equal amount of crystallized polymer than single cooling.

Moreover, the maximal production of crystallized polymer achievable by inject-
ing a given amount of cold Q(t) is reached when a double cooling strategy with
Q0(t) = QL(t) = Q(t)/2 is used. In this case,

P(t) = √
2 P̄(t). (22)

2.3 Crystallization time in double cooling strategies

The total crystallization is reached when P(tcryst) = L . Thus, the PSS approximation
provides us with the following equation to estimate the crystallization time:

(√
Q0(tPSS

cryst)+
√

QL(tPSS
cryst)

)2

= Lδ
2σc

L2. (23)

When the same constant temperature u is applied at both sides, expression (23) yields

tPSS
cryst = L2

8σ Ste
, (24)

where Ste = c(T f −u)/Lδ , showing that the time needed for complete crystallization
when cooling both sides at a given constant applied temperature is a quarter of the time
needed when cooling only one side with the same temperature, and that the double
cooling requires only one half of the amount of cold required by the simple cooling.

2.4 Errors estimates

To check how accurate our approximation is, the following error estimates, introduced
in Ref. [5] to test the FBP framework, are used:
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Table 1 Error estimates and crystallization times for the cases depicted in Fig. 2

u0 (◦C) uL (◦C) ξL2 (10−3) εT (10−3) ε (10−2) tNUM
cryst (103 s) t1(103 s) t2(103 s) %

A 40 40 5.34 3.73 8.1 5.11 0.23 4.55 84.6
B exp. exp. 2.30 0.18 3.5 9.37 1.1 8.9 84.7
C 40 exp. 5.60 2.16 6.2 7.49 0.22 6.66 85.9

ξ(t) = P(t)−
(

hPSS
0 (t)+ hPSS

L (t)
)
, (25)

ε(x, t) = T NUM(x, t)− T PSS(x, t), (26)

where T NUM denotes the temperature obtained by solving the polymerization pro-
blem (1)–(4) numerically. They are measured with the normalized L1 and L2 norms,

ξL2 = 1

L

⎛
⎝ 1

t2 − t1

t2∫
t1

ξ2(t) dt

⎞
⎠

1/2

, (27)

εT = 1

(t2 − t1)T f

t2∫
t1

⎛
⎝ 1

L

L∫
0

ε2(x, t) dx

⎞
⎠

1/2

dt, (28)

where t1 and t2 correspond to the short transient times at the beginning and the end of
the polymerization process, during which the crystallization band is not formed [5].

Moreover, tPSS
cryst, the solution of (23), can be also compared with the crystallization

time tNUM
cryst , obtained numerically by solving P(tNUM

cryst ) = L , by using the relative error

ε =
∣∣∣tNUM

cryst − tPSS
cryst

∣∣∣
tNUM
cryst

. (29)

Error estimates ξL2 , εT and ε are calculated for the three cooling strategies depicted
in Figs. 1 and 2, and are reported in Table 1.

The results show that error estimates are of the same order, but twice the value, than
those obtained when describing single cooling strategies under the FBP framework
sketched above [5], thus confirming that the double cooling polymerization process
is accurately described by the sum of the two Stefan problems. A priori, this seems
quite surprising, due to the nonlinear character of the polymerization problem.

Note that we are intentionally not using the exact solution of the Stefan problems
(available when the applied temperature is constant or exponentially decreasing [1])
because our goal consists in proving that the PSS approximation is accurate enough
to describe the double cooling polymerization process.
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3 The optimal control problem

The optimal control problem of the single cooling case was solved numerically in Ref.
[4]. The FBP framework allows us to rewrite the solution in terms of the parameters of
the material, and to derive the corresponding optimal controls for the double cooling
case.

3.1 Single cooling

Expression (8) from Ref. [4] shows the relation between the amount of crystallized
polymer P(t) and the amount of injected cold Q(t), obtained numerically:

P(t) ≈ α
√

Q(t), (30)

where α is a positive real constant. Expression (13) provides us with its analytical
expression, α = √

2σc/Lδ , and consequently with the analytical expression of the
optimal controls ū and τ̄ , see [4]:

if σ2 > σ1T 2
f : u(t) ≡ 0, τ = Lδ

2σcT f
L2, (31)

if σ2 ≤ σ1T 2
f : u(t) ≡ T f −

√
σ2

σ1
, τ =

√
σ1

σ2

Lδ
2σc

L2, (32)

where the control problem and the set of admissible controls Uad were defined as
follows,

{
Min J (u, τ ) = σ1

∫ τ
0
(
T f − u(t)

)2 dt + σ2τ,

(u, τ ) ∈ Uad =
{
(u, τ ) ∈ L2(0, τ )× [0,+∞) : u(t) ∈ [0, T f ], a.e., P(τ ) = L

}
,

(33)

and σ1 and σ2 are non-negative weights fixed to balance the contribution of each term.

3.2 Double cooling

For the optimal control of double cooling strategies, the control parameters are the
applied temperatures �u(t) = (u0(t), uL(t)) ∈ (L2(0, τ ))2 and the duration of the cool-
ing process τ ∈ [0,+∞). Following the same argument used in [4], a cost functional
J (�u, τ ) promoting a short duration of the cooling process and avoiding excessively
low applied temperatures can be written as

(C P)

{
Min J (�u, τ ) = σ1

[∫ τ
0
(
T f − u0(t)

)2 + (
T f − uL (t)

)2 dt
]

+ σ2τ,

(�u, τ ) ∈ Uad ,
(34)

where Uad =
{
(�u, τ ) ∈

(
L2(0, τ )

)2 × [0,+∞) : �u(t) ∈ [0, T f ]2, a.e., P(τ ) = L

}
.
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As in the single cooling case, the rate σ2/σ1 is a measure of the relative cost of the
two opposite contributions to the cost functional: to avoid low temperatures (σ2/σ1
small) and to shorten the cooling time (σ2/σ1 large). The cost of double cooling is
considered symmetric, that is, cooling at x0 = 0 has the same cost than cooling at
xL = L .

Optimal controls. Let (�u, τ ) be an admissible control; then, complete crystallization
is reached at t = τ and expression (23) means

(√
Q0(τ )+√

QL(τ )
)2 = Lδ

2σc
L2. (35)

Therefore, (C P) can be reformulated as the following optimization problem:

(O P)

⎧⎪⎨
⎪⎩

Min J (�u, τ ) = σ1

[
τ∫
0

(
T f − u0(t)

)2 + (
T f − uL (t)

)2 dt

]
+ σ2τ,

(�u, τ ) ∈ Vad ,

(36)

where Vad =
{
(�u, τ ) ∈

(
L2(0, τ )

)2 × [0,+∞) : �u(t) ∈ [0, T f ]2 a.e., and (35) holds

}
.

The admissibility condition (�u, τ ) ∈ Vad implies that there exists a lower bound for
τ , corresponding to u0 = uL = 0 ◦C:

τ ≥ τ̂
de f= Lδ

8σcT f
L2. (37)

Theorem 1 Assume that σ1 ∈ [0,+∞) and σ2 ∈ (0,+∞). Then,

a) If σ2 > 2σ1T 2
f , the unique solution of the optimization problem (O P) is given

by

u0(t) = uL(t) ≡ 0, τ = Lδ
8σcT f

L2. (38)

b) If σ2 ≤ 2σ1T 2
f , the unique solution of the optimization problem (O P) is given

by

u0(t) = uL(t) ≡ T f − 1

2

√
2σ2

σ1
, τ =

√
σ1

2σ2

( Lδ
4σc

L2
)
. (39)

Proof Using that 2(a + b) ≥ (
√

a + √
b )2 in expression (35) yields

Q0(τ )+ QL(τ ) ≥ Lδ
4σc

L2. (40)
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Thanks to Hölder’s inequality (for i = 0, L)

√
τ

⎛
⎝

τ∫
0

(
T f − ui (t)

)2
dt

⎞
⎠

1/2

≥
τ∫

0

(
T f − ui (t)

)
dt, (41)

we get, ∀(�u, τ ) ∈ Vad :

⎛
⎝

τ∫
0

(
T f − u0(t)

)2
dt

⎞
⎠

1/2

+
⎛
⎝

τ∫
0

(
T f − uL(t)

)2
dt

⎞
⎠

1/2

≥ Lδ
4
√
τσc

L2. (42)

Using again 2(a + b) ≥ (
√

a + √
b )2, we have

τ∫
0

(
T f − u0(t)

)2
dt +

τ∫
0

(
T f − uL(t)

)2
dt ≥ 1

2τ

( Lδ
4σc

L2
)2

. (43)

Consequently,

J (�u, τ ) ≥ ψ(τ), ∀(�u, τ ) ∈ Vad , (44)

where we have used the auxiliary real function

ψ(τ) = σ1

2τ

( Lδ
4σc

L2
)2

+ σ2τ, τ ∈ [τ̂ ,+∞). (45)

Elementary calculus shows that ψ(τ) has a unique global minimum at τ in [τ̂ ,+∞),
where

τ =

⎧⎪⎨
⎪⎩
τ̂ if σ2 > 2σ1T 2

f ,

√
σ1

2σ2

( Lδ
4σc L2

)
if σ2 ≤ 2σ1T 2

f .

(46)

Then, it is quite easy to verify that if σ2 ≤ 2σ1T 2
f ,

J (�u, τ ) ≥ ψ(τ) ≥ ψ(τ) = J

(
T f − 1

2

√
2σ2

σ1
, T f − 1

2

√
2σ2

σ1
, τ

)
, ∀(�u, τ ) ∈ Vad ,

(47)

meanwhile, if σ2 > 2σ1T 2
f ,

J (�u, τ ) ≥ ψ(τ) ≥ ψ(τ̂ ) = J (0, 0, τ̂ ), ∀(�u, τ ) ∈ Vad . (48)
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To prove the uniqueness, let us assume that (�u�, τ �) ∈ Vad is another solution of (O P),
i.e. J (�u�, τ �) = J (�u, τ ). In any case it is easy to deduce from previous estimations
that ψ(τ�) = ψ(τ). Since ψ is strictly convex, we get that τ � = τ .

We conclude that �u�(t) = �u(t), a.e. t ∈ (0, τ ), by seeing that

τ∫
0

(
u�0(t)− u0

)2
dt +

τ∫
0

(
u�L(t)− uL

)2
dt

=
τ∫

0

(
(u�0(t)− T f )+ (T f − u0)

)2
dt +

τ∫
0

(
(u�L(t)− T f )+ (T f − uL)

)2
dt

=
τ∫

0

(
u�0(t)− T f

)2
dt +

τ∫
0

(T f − u0)
2dt − 2(T f − u0)

τ∫
0

(
T f − u�0(t)

)
dt

+
τ∫

0

(
u�L(t)− T f

)2
dt +

τ∫
0

(T f − uL)
2dt − 2(T f − uL)

τ∫
0

(
T f − u�L(t)

)
dt

= 2

τ∫
0

(T f − u0)
2dt − 2(T f − u0)

τ∫
0

(
T f − u�0(t)

)
dt + 2

τ∫
0

(T f − uL)
2dt

− 2(T f − uL)

τ∫
0

(
T f − u�L(t)

)
dt ≤ 0,

where we have used the inequality (40) for (�u�, τ ) and the equality

τ∫
0

(
T f − u�0(t)

)2
dt +

τ∫
0

(
T f − u�L(t)

)2
dt =

τ∫
0

(T f − u0)
2dt +

τ∫
0

(T f − uL)
2dt.

(49)

��
Noticeably, the remarks written in Ref. [4] about the choice of the ratio σ2/σ1 for

the single cooling are also in order in the double cooling case.

4 Conclusion

We have analyzed a recent polymer crystallization model for a new kind of cooling
strategy, consisting in cooling the sample at both sides. By means of a free boundary
problem framework whose main features have been presented here, we have shown
that the double cooling crystallization process can be approximated by the sum of two
Stefan problems. Explicit expressions of the solution have been derived and errors
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estimates have revealed a quite high accuracy, both in reproducing the behaviour of
the crystallization front and the distribution of the temperature field. Also, important
magnitudes such as the crystallization time and the amount of crystallized polymer
with respect to the single cooling case have been derived explicitly.

The characterization of the double cooling crystallization process by means of two
Stefan problems has then be used to find the optimal cooling strategy when both sides
can be cooled. The solution of the control problem is obtained explicitly in terms of the
parameters of the material, and shows that the optimal strategy consists in first, using a
symmetric strategy, that is, applying the same cooling temperature at both sides of the
sample, and second, using a constant temperature, thus recovering the result obtained
for the single cooling case.

The free boundary problem framework has therefore shown to be quite effective
in the analysis of cooling strategies in polymerization processes and could be used in
higher dimension problems in future works.
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